Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Indian J Med Microbiol ; 2019 Sep; 37(3): 423-425
Article | IMSEAR | ID: sea-198896

ABSTRACT

Diphtheria is a dreadful disease caused by Corynebacterium diphtheriae. Lysogenised bacteriophages carrying toxin gene in C. diphtheriae can make the strain toxigenic. However, such phage disseminates the toxin genes to other strains when it undergoes lytic phase. As little is known about the phage diversity in C. diphtheriae in India, the present study was undertaken to investigate the prophages integrated into the genome of 29 clinical isolates of C. diphtheriae using whole-genome shotgun sequencing. Amongst these isolates, 27 were toxigenic, while 2 were non-toxigenic strains. Of the 27 toxigenic strains, all harbored known phages carrying toxin gene and two other phages with unknown function. However, the two non-toxin strains did not harbour any of the phages in the genome. It is imperative to devise prevention strategies that hinder the dissemination of toxin by prophages, as it may increase the complications of diphtheria post-immunisation.

2.
Indian J Med Microbiol ; 2019 Jun; 37(2): 198-202
Article | IMSEAR | ID: sea-198884

ABSTRACT

Background: Non-typhoidal Salmonella (NTS) infection is a serious public health problem globally. Although NTS infections are self-limited, antimicrobial therapy is recommended for severe infections and immunocompromised patients. Antimicrobial resistance (AMR) in these pathogens further limits its therapeutic options. Here, we report an incidence of ceftriaxone resistance in NTS over the past 9 years in a southern Indian region. Materials and Methods: Molecular mechanisms of resistance in ceftriaxone-resistant NTS have been tested by both phenotypic and molecular methods. Minimum inhibitory concentration was determined by the E-test and broth microdilution method. AMR gene markers of ?-lactamases such as AmpCs (blaMOX, blaCMY, blaDHA, blaFOX, blaACC and blaACT) and extended-spectrum ?-lactamases (ESBLs) (blaSHV, blaTEM, blaVEB, blaPER, blaCTXM-1like,blaCTXM-2like, blaCTXM-8like, blaCTXM-9like and blaCTXM-25like) were screened. The presence of IncH12 and IncI1 plasmid was also analysed. Results: The study reports a 5% prevalence of ceftriaxone resistance in NTS. The most common serogroup was Salmonella Group B followed by Salmonella Group E and Salmonella group C1/C2. The occurrence of blaCTX-M-1, blaTEM, blaCMY and blaSHV genes was observed in 54%, 54%, 48% and 3% of the isolates, respectively. Interestingly, few isolates carried dual resistance genes (ESBLs and AmpCs). IncH12 and IncI1 plasmid was identified in isolates carrying ESBL and AmpC genes, respectively. Conclusion: This study shows that ceftriaxone resistance is mainly mediated by ?-lactamases such as ESBL and AmpC. As the incidence of ceftriaxone resistance is rising gradually over the years, it is imperative to monitor the AMR in this species.

3.
Indian J Med Microbiol ; 2019 Jun; 37(2): 147-162
Article | IMSEAR | ID: sea-198879

ABSTRACT

The prime goal of molecular epidemiology is to identify the origin and evolution of pathogens, which can potentially influence the public health worldwide. Traditional methods provide limited information which is not sufficient for outbreak investigation and studying transmission dynamics. The recent advancement of next-generation sequencing had a major impact on molecular epidemiological studies. Currently, whole-genome sequencing (WGS) has become the gold standard typing method, especially for clinically significant pathogens. Here, we aimed to describe the application of appropriate molecular typing methods for global antimicrobial resistance surveillance system pathogens based on the level of discrimination and epidemiological settings. This shows that sequence-based methods such as multi-locus sequence typing (MLST) are widely used due to cost-effectiveness and database accessibility. However, WGS is the only method of choice for studying Escherichia coli and Shigella spp. WGS is shown to have higher discrimination than other methods in typing Klebsiella pneumoniae, Acinetobacter baumannii and Salmonella spp. due to its changing accessory genome content. For Gram positives such as Streptococcus pneumoniae, WGS would be preferable to understand the evolution of the strains. Similarly, for Staphylococcus aureus, combination of MLST, staphylococcal protein A or SCCmec typing along with WGS could be the choice for epidemiological typing of hospital- and community-acquired strains. This review highlights that combinations of different typing methods should be used to get complete information since no one standalone method is sufficient to study the varying genome diversity.

4.
Article | IMSEAR | ID: sea-195800

ABSTRACT

Background & objectives: Bacillary dysentery caused by Shigella spp. remains an important cause of the crisis in low-income countries. It has been observed that Shigella species have become increasingly resistant to most widely used antimicrobials. In this study, the antimicrobial resistance, virulence and plasmid profile of clinical isolates of Shigella species were determined. Methods: Sixty clinical Shigella isolates were subjected to whole-genome sequencing using Ion Torrent platform and the genome sequences were analyzed for the presence of acquired resistance genes, virulence genes and plasmids using web-based software tools. Results: Genome analysis revealed more resistance genes in Shigella flexneri than in other serogroups. Among ?-lactamases, blaOXA-1was predominantly seen followed by the blaTEM-1B and blaEC genes. For quinolone resistance, the qnr S gene was widely seen. Novel mutations in gyr B, par C and par E genes were observed. Cephalosporins resistance gene, blaCTX-M-15 was identified and plasmid-mediated AmpC ?-lactamases genes were found among the isolates. Further, a co-trimoxazole resistance gene was identified in most of the isolates studied. Virulence genes such as ipaD, ipaH, virF, senB, iha, capU, lpfA, sigA, pic, sepA, celb and gad were identified. Plasmid analysis revealed that the IncFII was the most commonly seen plasmid type in the isolates. Interpretation & conclusions: The presence of quinolone and cephalosporin resistance genes in Shigella serogroups has serious implications for the further spread of this resistance to other enteric pathogens or commensal organisms. This suggests the need for continuous surveillance to understand the epidemiology of the resistance.

SELECTION OF CITATIONS
SEARCH DETAIL